Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.19.423584

ABSTRACT

Niemann-Pick type C1 (NPC1) receptor is an endosomal membrane protein that regulates intracellular cholesterol trafficking, which is crucial in the Ebola virus (EBOV) cycle. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cell by binding of the viral spike (S) protein to the ACE2 receptor. This requires S-protein processing either by the surface transmembrane serine protease TMPRSS2 for plasma membrane fusion or cathepsin L for endosomal entry. Additional host factors are required for viral fusion at endosomes. Here, we report a novel interaction of the SARS-CoV-2 nucleoprotein (N) with the cholesterol transporter NPC1. Moreover, small molecules interfering with NPC1 that inhibit EBOV entry, also inhibited human coronavirus. Our findings suggest an important role for NPC1 in SARS-CoV-2 infection, a common strategy shared with EBOV, and a potential therapeutic target to fight against COVID-19.


Subject(s)
Coronavirus Infections , Hemorrhagic Fever, Ebola , COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.20.423533

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has caused millions of deaths and will continue to exact incalculable tolls worldwide. While great strides have been made toward understanding and combating the mechanisms of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection, relatively little is known about the individual SARS-CoV-2 proteins that contribute to pathogenicity during infection and that cause neurological sequela after viral clearance. We used Drosophila to develop an in vivo model that characterizes mechanisms of SARS-CoV-2 pathogenicity, and found ORF3a adversely affects longevity and motor function by inducing apoptosis and inflammation in the nervous system. Chloroquine alleviated ORF3a induced phenotypes in the CNS, arguing our Drosophila model is amenable to high throughput drug screening. Our work provides novel insights into the pathogenic nature of SARS-CoV-2 in the nervous system that can be used to develop new treatment strategies for post-viral syndrome.


Subject(s)
Severe Acute Respiratory Syndrome , Death , COVID-19 , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL